Change Language :
Cable management has come into the limelight more and more because machine reliability has increased dramatically in recent years, even though robots have grown more complex. However, the methods used to attach and guide cables have not quite followed suit. Since the 1960s, cable management on robots hasn’t changed significantly and, in fact, is often overlooked altogether. Managing cables and hoses may seem simple, but in reality it is an important part to of any well-functioning robot.
Segmenting the dress pack into three shorter sections prevents it from wrapping, catching, or snagging on machines, and minimizes stress on cables and hoses. This approach applies to any six-axis robot, regardless of manufacturer or application. While other fixes, such as duct tape and ties wraps, might work temporarily and cost less, in the long run properly designed dress packs reduce unnecessary downtime and maintenance costs.
In addition to the appropriate dress pack, it is imperative that six-axis robots use dynamic cables specifically designed for continuous flexing. Two important features to take into account are a cable’s torsion-resistance and shielding. Shielded cables face a greater risk of failure, as constant movements can easily compromise the cable jacket. Use unshielded, high-flex cables whenever possible to avoid problems.
As six-axis robots evolve, cable-management systems need to develop along with them. Designers should consider the less-is-more approach for every robotic applications, as it eliminates cable damage, expensive maintenance and downtime. Of course, a number of other elements, including the robot’s function, space constraints and budget also play a role. But for any combination, there is a suitable less-is-more approach that keeps vital cables away from harm’s way while enabling them to mimic the fluid movements of a six-axis robot.
Another step that should extend cable life is to allow sufficient clearance inside the carrier for electrical cables, pneumatic hoses and tubing for other media. This compensates for relative forces between cables and hoses. Carrier suppliers typically provide this data.